

UTILITY SCALE

Discussion Lead: Charlie Sullivan, Dartmouth

Tech SETA: Geoff Short, BAH

ARPA-E Fellow: Phil LaRochelle

Breakout Session 8 February 2011

Targets and design considerations

- Distribution voltage 13kV+ class (medium voltage)
 - Anything lower doesn't help utility in integration
- In 500kW-1MW class, without DC boost situation limited by wiring losses
- Another approach: much higher levels and modularity in DC/DC stage
 - Design system so it is expandable
- Factors to decide the design point
 - Design right now is on the order of 1MW
 - Smaller maintenance drives this. Put it all in one spot.

Targets and design considerations (cont'd)

- Inverter is only a portion of what goes in building. Overhead you want to minimize. To enable bigger inverter PCS, need higher V.
- High power inverters exist. The problem is the system.
 - How to go in modular structure and integrate these voltages where you can use a bigger inverter?
 - DC/DC booster phase is an option

Components required to dramatically increase power density while reducing the cost of the inverter

- High freq switches
 - Proven high voltage, high frequency switches semiconductor switches
 - SiC have square SOA (safe operating area)
 - Make SiC and GaN available in market demonstrate reliability
 - Simple bridge circuit with minimum recovery charge
- High freq, high flux magnetics
 - Low-loss high-flux for frequency range
 - Winding designs
 - Note: If switches limit frequency, then magnetics will be bound there
- Packaging
 - Insulation
 - Cooling

Proposed methodologies to evaluate first cost of power electronics

- No consensus reached. Thoughts:
 - First, have to build it before you model cost
 - Volume of manufacturing has to be part of your cost modeling
 - Partnership across the supply chain will allow team to discuss cost targets, or having customer on your team
 - "Should cost" modeling a la silicon
 - Must look at it from system level
 - Devices
 - Topologies
 - Has to meet UL but would require UL tester as a partner?
 - First cost metric is the toughest because of all varied topologies

Utility-scale PV - target operating voltages and power

- 1. For utility-scale PV, what are target operating voltages and power?
- Distribution voltage 13kV+ class (medium voltage)
 - Anything lower doesn't help utility in integration
- In 500kW-1MW class, without DC boost situation limited by wiring losses
- Another approach: much higher levels and modularity in DC/DC stage
 - Design system so it is expandable
- Factors to decide the design point
 - Design right now is on the order of 1MW
 - Smaller maintenance drives this. Put it all in one spot.

Utility-scale PV - Effect of inverter properties on installation cost

- 2. What properties of the inverter contribute to the overall installation cost for utility-scale PV systems? How much?
 - Weight and footprint, yes
 - Input DC V is trickier
 - Drives O&M. Higher voltage means longer wiring... less inverters.
 - Going higher would be great, but need materials at cost
 - We do 600V now b/c it's a nice sweet spot
 - 1000V or higher needs to be behind fence
 - Output Voltage. 13kV?

- 3. What is the appropriate design increment for modular utility-scale inverters? 500kW?
 - In 500kW-1MW class, without DC boost situation limited by wiring losses
 - Another approach which is much higher levels and modularity is in dc/dc stage
 - Design system so it is expandable
 - Factors to decide the design point
 - Design right now is on the order of 1MW
 - Smaller maintenance drives this. Put it all in one spot
 - Inverter is only a portion of what goes in building. Overhead you want to minimize. To enable bigger inverter VCS, need higher V
 - High power inverters are there. The problem is the system
 - How to go in modular structure and integrate these voltages where you can use a bigger inverter?
 - DC/DC booster phase is what it keeps coming back to

State-of-the-art power density for a PV inverter for 500kW-60MW systems

- 4. What is the state-of-the-art power density for a PV inverter for 500kW-60MW systems?
- Cabinet is 8'x20'x4' for 1MW
- Systems designed for someone to walk through, so this isn't for power electronics itself

Proposed circuit architecture approaches

- 5. Consider <u>circuit architectures</u> that can drive to dramatic reductions in weight, size, and cost.
- Talking about system architectures is just as important as circuit architectures
- Dramatically smaller
 - Inverter itself smaller
 - Low frequency transformer goes away (probably 10%)
- Dc/Dc isolated transformer structure
 - High frequency reduces size weight and cost
- Size of PCS is dominated by servicability
- Opportunity not in making PCS smaller, but in Pcs 10X more powerful

Switching frequency employed in today's state-of-the-art inverters for utility-scale PV

- 6. What is the switching frequency employed in today's state-of-the-art inverters for utility-scale PV? 5kHz?
- 3, 5, 8, 15kHz has been seen
- 15 in testing phase
- No reason not to go higher for 480V system
- Depends on whether you have booster stage or not
- As long as doesn't generate harmonics but may be easier to filter at higher frequency
- Advantages of going higher:
 - reducing size of filter components
 - Efficiency
 - No need to store energy on board do not need electrolytic capacitor

Components required to dramatically increase power density while reducing the cost of the inverter

- 7. Consider the components required to dramatically increase power density while reducing the cost of the inverter.
- Will take innovations in all areas
 - High freq switches
 - Proven high voltage, high frequency switches semicondutor switches
 - SiC have square SOA (safe operating area) breaking past the limited rating/use
 of the device of other materials
 - Make SiC and GaN available in market demonstrate reliability
 - Simple bridge circuit with minimum recovery charge
 - High freq, high flux magnetics
 - Low loss high flux for freq range
 - If switches limit frequency, then magnetics will be bound there
 - Winding designs
 - Packaging
 - Insulation
 - Cooling

Issues related to isolation and grounding

- 8. Address issues related to isolation and grounding?
- When they put a lot of DC lines in one area, lighting has been induced. Higher V tends to induce more lightning

Proposed methodologies to evaluate first cost of power electronics

- 9. What methodology can be used to evaluate first cost of the power electronics? How can progress against cost metrics be evaluated?
- First have to build it before you model cost
- Volume of manufacturing has to be part of your cost modeling
- Partnership across the supply chain will allow team to discuss cost targets, or having customer on your team.
- "Should cost" modeling a la silicon
- Must look at it from system level
 - Devices
 - Topologies
- Has to meet UL but would require UL tester as a partner?
- First cost metric is the toughest because of all varied topologies

